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Abstract

Enhancing low-light videos in a supervised style presents a
set of challenges, including limited data diversity, misalign-
ment, and the domain gap introduced through the dataset con-
struction pipeline. Our paper tackles these challenges by con-
structing a self-learned enhancement approach that gets rid
of the reliance on any external training data. The challenge
of self-supervised learning lies in fitting high-quality signal
representations solely from input signals. Our work designs
a bottleneck neural representation mechanism that extracts
those signals. More in detail, we encode the frame-wise rep-
resentation with a compact deep embedding and utilize a neu-
ral network to parameterize the video-level manifold consis-
tently. Then, an entropy constraint is applied to the enhanced
results based on the adjacent spatial-temporal context to filter
out the degraded visual signals, e.g. noise and frame incon-
sistency. Last, a novel Chromatic Retinex decomposition is
proposed to effectively align the reflectance distribution tem-
porally. It benefits the entropy control on different compo-
nents of each frame and facilitates noise-to-noise training,
successfully suppressing the temporal flicker. Extensive ex-
periments demonstrate the robustness and superior effective-
ness of our proposed method. Our project is publicly available
at: https://huangerbai.github.io/SLBNR/.

Introduction
Videos captured in a low-light environment suffer from se-
vere visual degradation. Common intuitive choices (e.g. long
exposure or high ISO) are not satisfactory for videos. It
is difficult to apply the former for video, while the latter
leads to heavy noise. Therefore, low-light video enhance-
ment from the software perspective is highly demanded.
This task is challenging because of the complex noise distri-
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Figure 1: Results and frameworks of different methods.
(b) The learning paradigm of supervised methods; (c)
Even bounded by the content bottleneck, UDVD (Sheth
et al. 2021)’s results still suffer from remaining noise
due to the overfitting caused by self-supervision; (d)
Frame2Frame (Ehret et al. 2019) introduces artifacts as
solely the objective bottleneck might incur misalignment
during model optimization; (e) Our method constructs the
bottleneck in both content and objective views, which leads
to superior results.

bution and flicker (Wei et al. 2022; Jiang et al. 2022), which
damages the spatial structure and the temporal consistency.

In the deep-leaning era, many learning-based low light
enhancement methods (Chen et al. 2019; Jiang and Zheng
2019; Wang et al. 2021) are proposed. Most of them adopt
full-supervision to pursue better restoration performance,
which learns the mapping strategy from low-light im-
ages/videos to normal-light ones with an end-to-end learned
neural network. To serve that, several paired datasets (Chen
et al. 2019; Jiang and Zheng 2019; Wang et al. 2021) are col-
lected for training and evaluation. However, it is resource-
intensive to construct a real paired low light video dataset,
which demands professional equipment e.g. an electric slide
rail (Wang et al. 2021) or a split optic (Jiang and Zheng
2019), and careful registration. Furthermore, this means
of collection assumes that the directly captured videos are
normal-light ground truth and processed videos processed
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Figure 2: The overview of the self-supervised methodology for restoration. Red lines/modules denote where the bottleneck is
employed to screen out the visual degradation, aiding in the reconstruction of the intrinsic signal from the input.

by physics devices, e.g. neutral density filtered videos, are
low-light ones. In this way, the scene is actually normally lit
and low-light videos are simulated by decreasing the input
photon, whose illumination distribution is notably different
from authentic dark ones. Some researchers endeavour to
construct unpaired/self-supervised learning methods to en-
hance low-light images (Guo et al. 2020; Liu et al. 2021;
Jiang et al. 2021; Ma et al. 2022) without the need of paired
datasets. Typically, these approaches exploit the intrinsic
prior of normal images, e.g. illumination distribution or his-
togram, to facilitate the enhancement of low-light images
and improve their visual quality. However, owing to the lack
of robust supervision, the majority of these methods struggle
to deal with intensive noise.

Some restoration methods focus on learning to suppress
noise, e.g. Noise2Noise (Lehtinen et al. 2018) and Blind-
Spot Network (Krull, Buchholz, and Jug 2019), with the
pixel-level self-supervision that takes the input image itself
as the ground truth. Noise2Noise paradigm (Fig. 2 (a)) as-
sumes different noisy versions of the input follows i.i.d. and
deploys the bottleneck on the objective. Blind-Spot Net-
work (Fig. 2 (b)) limits the information flow from the input
to the output by controlling the receptive field of the net-
work, called content bottleneck. However, these two routes
face challenges when enhancing a dark video. The former
relies on the i.i.d. assumption, which is seldom guaranteed
in low-light videos. The latter follows certain noise mod-
els (Sheth et al. 2021), which fails to describe the real noise
in low-light conditions. Fig. 1 provides results with the im-
plementation of both methodology on self-learned video en-
hancement, which still show severe visual distortions.

In essence, the critical aspect of self-supervised methods
resides in their capacity to extract high-quality signal repre-
sentations from noisy inputs with a bottleneck mechanism
to effectively filter out the visual degradation signal. In this
work, we focus on designing novel bottleneck mechanisms
from both objective and content perspectives, which offers
an enhanced means to regulate the information flow for self-
supervised learning. In detail, we develop a self-learned low-
light video enhancement method based on bottleneck neural
representation. First, to limit the information from the input
content, besides taking the coordinates as input as shown in
Fig. 2 (c), the proposed neural representation (Fig. 2 (d)) ad-
ditionally takes a compact deep embedding as input, which
limits the information from the input content while still of-
fering richer content. The dimension of this deep embed-
ding is kept low. Being trained over the whole video, it im-

plicitly integrates temporal information into the network pa-
rameters, which naturally leads to temporal consistency. For
the objective bottleneck, we design a learnable entropy es-
timation and constraint to suppress intensive noise and con-
trol the illumination distribution. Furthermore, instead of di-
rectly predicting the signal, we propose to generate a layer-
wise representation of given frames. Compared with the
original Retinex model (Fu et al. 2016), the novel layer-wise
representation fully considers the characteristics of low-light
videos and naturally disentangles the visual degradation, i.e.
noise and color bias. It also resolves the distribution bias
of adjacent frames, facilitating noise-to-noise training and
benefits the entropy control on different components of the
signal. With experiments of no-reference evaluation, the su-
periority of our method over the state-of-the-art is verified
and the effectiveness of our design is demonstrated. Note
that, our method does not rely on any external data.

Our contributions are summarized as follows:

• We make the pioneering effort in devising a self-
supervised deep approach for low-light video enhance-
ment. It integrates the bottleneck mechanisms from both
the content and objective perspectives as well as a chro-
matic Retinex model, obtaining satisfactory visual qual-
ity without using any external data.

• For the content bottleneck, a hybrid neural representation
is introduced. A learnable low-dimension deep embed-
ding provides richer content information. The model is
trained over the whole video, whose parameters implic-
itly integrate temporal information and naturally lead to
temporal consistency.

• For the objective bottleneck, an entropy constraint is ap-
plied to the predicted results. Intensive noise and biased
illumination are suppressed with the objective to reduce
the entropy of the signal.

• A novel Chromatic Retinex model is proposed to trans-
form the signal into layer-wise representation. It bene-
fits explicit entropy control on different components of
results and better aligns distributions for noise-to-noise
training.

Related Works
Low Light Enhancement
Enhanced imaging in a photon-limited scene is a long-
standing demand because of intensive hardware noise and
inaccurate white balance (Huang et al. 2022; Li et al. 2022).
In the deep learning era, focusing on image enhancement,
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researchers began to collect real paired datasets (Wei et al.
2018; Chen et al. 2018) in a static scene with twice capturing
which facilitates supervised learning. Following researchers
came up with more diverse architectures (Wang et al. 2022;
Ren et al. 2019) and various loss functions (Cai, Gu, and
Zhang 2018; Wang et al. 2019a) for better illumination ad-
justment and details reconstruction. In many works (Wei
et al. 2018; Zhang, Zhang, and Guo 2019; Zhang et al. 2021;
Wang et al. 2019b), Retinex theory is integrated into the net-
work, providing a physical model-based decomposition to
satisfy the human visual system.

For a video shot in a dark dynamic scene, such method-
ology does not work because long exposure is unavailable
and limited to the frame rate. Some researchers (Chen et al.
2019; Jiang and Zheng 2019; Wang et al. 2021) made valu-
able efforts to collect paired datasets. However, in the need
of capturing bright videos as ground truth, the scene is actu-
ally well-lit. It brings an inevitable domain gap. Therefore,
efficient unsupervised low-light video enhancement meth-
ods are needed to save the effort of dataset collection and
resolve the issue of domain gap with less dependence on the
training set.

Self-supervised Restoration
With similar motivation for the denoising task, self-
supervised restoration methods (Lehtinen et al. 2018; Krull,
Buchholz, and Jug 2019; Huang et al. 2021) are proposed.
These methods are based on the self-regression and integrate
prior (Lehtinen et al. 2018; Huang et al. 2021) or regulariza-
tion (Krull, Buchholz, and Jug 2019) into the network and
training dynamics. However, the noise model in a dark scene
is hugely disturbed and hybrid (Wei et al. 2022; Monakhova
et al. 2022), which is usually in contradiction with the as-
sumption of unsupervised methods. Therefore, trivially en-
hancing dark images/videos using a denoising module con-
catenated with another lightening module can not guarantee
a promising performance.

Implicit neural representation (Chen and Zhang 2019) pa-
rameterizes a signal with continuous functions via neural
network. It only takes the coordinate as the input and outputs
the corresponding value, e.g. frame number for videos (Chen
et al. 2021). Based on the deep prior (Ulyanov, Vedaldi, and
Lempitsky 2018), the structure of the neural network acts as
a regularization to limit the transmutation of the signal. It
has been widely used in 3D vision (Mescheder et al. 2019;
Mildenhall et al. 2020), providing a way to encode high-
dimension signals. However, generating detailed texture is
difficult for implicit neural representation which requires a
long-time training without the guidance of local informa-
tion. Some researchers also attempt to inject local informa-
tion with a learned embedding (Peng et al. 2020; Yu et al.
2021; Chibane, Alldieck, and Pons-Moll 2020; Chen et al.
2023), showing a performance gain.

Bottleneck Neural Representation
Motivation
As mentioned in Sec. , challenges to low-light video en-
hancement exist in three aspects:

…

3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.

Our neural representation can perform an implicit multi-
frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
⇣
bXt,warp

� bXt�1, o( bXt, bXt�1)
�⌘

, (3)

where warp(·, ·) takes the former prediction bXt�1 and op-
tical flow between them o( bXt, bXt�1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:

b✓ = {µi
t,�

i
t, w

i
t}

= fp({Xt�1, Xt, Xt+1}), (4)

where b✓ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in 5, b✓ is
used to construct probability density function bp:

bp(x; b✓) =
MX

i=1

wi
tN (x;µi

t,�
i
t), (5)

whereN (·; ·) denotes Gaussian distribution. Given a pixel bx
from frame bXt, the probability bP (bx) is:

bP (bx) =
Z x+�/2

x��/2

bp(x; b✓)dx, (6)

where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame bXt is:

Lgmm = E( bXt) =
1

HW

X

bx
� log2 bP (bx). (7)
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Figure 3: The hybrid neural representation utilizes the
content-agnostic coordinate of the implicit neural represen-
tation with a content-adaptive compact deep embedding,
which provides richer intrinsic information for reconstruct-
ing normal-light images.

• Collecting a paired real video dataset is challenging and
leads to domain gaps.

• There are severe hybrid distortions in low-light videos,
which hardly are well handled by existing bottleneck
mechanisms or their simple combinations.

• An unstable white balance in videos causes severe tem-
poral flicker, which leads to the violation of the assump-
tions in existing self-supervised restoration methods.

Therefore, we propose to construct a self-learned bottle-
neck neural representation for low-light video enhance-
ment without using any external data. The joint bottle-
neck of content and objective is employed via Hybrid
Neural Representation and Entropy Minimization Model, re-
spectively, to obtain temporal consistent, noise-suppressed
and well-lit results. The proposed Chromatic Retinex model
decomposes the signal for better enhancement, which allevi-
ates inconsistent distributions and facilitates more effective
self-supervision.

Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. , im-
plicit neural representation encodes the information into net-
work parameters, where the input is a content-agnostic co-
ordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D repre-
sentation or videos and (x, y, z, σ, ϕ) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
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3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.
Our neural representation can perform an implicit multi-

frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
⇣
bXt,warp

� bXt 1, o( bXt, bXt 1)
�⌘

, (3)

where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:

b✓ = {µi
t,�

i
t, w

i
t}

= fp({Xt�1, Xt, Xt+1}), (4)

where b✓ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in 5, b✓ is
used to construct probability density function bp:

bp(x; b✓) =
MX

i=1

wi
tN (x;µi

t,�
i
t), (5)

whereN (·; ·) denotes Gaussian distribution. Given a pixel bx
from frame bXt, the probability bP (bx) is:

bP (bx) =
Z x+ /2

x /2

bp(x; b✓)dx, (6)

where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame bXt is:

Lgmm = E( bXt) =
1

HW

X

bx
� log2 bP (bx). (7)
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3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.
Our neural representation can perform an implicit multi-

frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
⇣
bXt,warp

� bXt 1, o( bXt, bXt 1)
�⌘

, (3)

where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:
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from frame bXt, the probability bP (bx) is:

bP (bx) =
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where � is set as the bin size 1/255 for bx 2 [0, 1] considering
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3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.

Our neural representation can perform an implicit multi-
frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
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bXt,warp

� bXt 1, o( bXt, bXt 1)
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, (3)

where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:

b✓ = {µi
t,�
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= fp({Xt 1, Xt, Xt+1}), (4)

where b✓ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in 5, b✓ is
used to construct probability density function bp:
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whereN (·; ·) denotes Gaussian distribution. Given a pixel bx
from frame bXt, the probability bP (bx) is:
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where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
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We follow the grey-world assumption and the white balance
design in the image signal processor (ISP) to set the green
channel as the denominator. Ic is formulated as:

Ic = �(
mean(��1(Xc))

mean(��1(Xg))
)I, (15)

where I denotes original illumination layer in Retinex model
and mean can be calculated locally or globally. In the im-
plementation, we use global mean and choose the definition
of I as:

I = argmin
x

(kx� I0k22 + �

����
rx

rI0 + ✏

����
1

),

I0 = max
c2{r,g,b}

(Xc), (16)

where � is a hyper-parameter and ✏ avoids zero-division.
Combined with this Chromatic Retinex decomposition,

the output of hybrid neural representation changes from
Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

f(zt) = { bRt, bIt}, bXt = bRt ⌦ bIt. (17)
Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = k bRt ⌦ bIt �Xtk22, (18)
and:

Lillum = k # (bIt)� # (I0) k22 (19)
where we replace the regularization term in Eqn. (16) with a
downsampler # (·) following (Liang et al. 2022). Because
the Chromatic Retinex decouples distortions where color
flickers mainly exist in the illumination layer, we can assume
the temporal consistency of the reflectance layers. There-
fore, the warping loss Lwarp changes from Eqn. (3) into:

Lwarp = d
⇣
bRt,warp

� bRt�1, o( bRt, bRt�1)
�⌘

. (20)

After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bItc, we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:

� = h(bI), (21)
where � acts as the index for Gamma function:

Ĩ = bI . (22)

Then we obtain the final prediction

Neural
Network

X̃ . Added the enhance-
ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .

Figure 6: Self-supervision in Chromatic Retinex Decompo-
sition. We omit the illumination enhancer which is displayed
in Fig. 5.

3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the loss function:

L = Lillum + �1Lself + �2Lwarp

+ �3Lgmm + �4Lhist + �5Lce. (23)

4 Experimental Results
4.1 Implementation Details
The training starts with a 300-epochs self-regression with
the loss Lself then continue with a fully-equipped loss for
another 300 epochs. We choose �1 = 100, �2 = 10�4, �3 =
10�3, �4 = 1, �5 = 1.

To evaluate the performance of the proposed method,
we compare it with 1) unsupervised low-light image en-
hancement methods MF (Fu et al. 2016), LIME (Guo, Li,
and Ling 2017), Zero-DCE (Guo et al. 2020), RUAS (Liu
et al. 2021) and EnlightenGAN (Jiang et al. 2021); 2) super-
vised low-light video enhancement methods: SMID (Chen
et al. 2019) and SDSD (Wang et al. 2021); 3) unsupervised
denoising methods: VBM4D (Maggioni et al. 2012) and
UDVD (Sheth et al. 2021); 4) combined unsupervised de-
noising and low-light methods. All deep methods use their
own pretrained checkpoints. We have attempted to retrain
unsupervised methods on the given sequence from scratch
but there is a performance drop or no obvious gain. It may
be because the scale of training samples is small.
The evaluation dataset is commonly used DRV (Chen

et al. 2019) which provides dynamic videos of a real dark
scene. After omitting videos captured in the same scene
or with too many or few frames, we randomly choose
an evaluation set where each video has 100-120 frames.
No-reference metrics NIQE (Mittal, Soundararajan, and
Bovik 2013), ILNIQE (Zhang, Zhang, and Bovik 2015),

We follow the grey-world assumption and the white balance
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channel as the denominator. Ic is formulated as:
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the output of hybrid neural representation changes from
Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

f(zt) = { bRt, bIt}, bXt = bRt ⌦ bIt. (17)
Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = k bRt ⌦ bIt �Xtk22, (18)
and:

Lillum = k # (bIt)� # (I0) k22 (19)
where we replace the regularization term in Eqn. (16) with a
downsampler # (·) following (Liang et al. 2022). Because
the Chromatic Retinex decouples distortions where color
flickers mainly exist in the illumination layer, we can assume
the temporal consistency of the reflectance layers. There-
fore, the warping loss Lwarp changes from Eqn. (3) into:
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After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bItc, we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:
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where � acts as the index for Gamma function:
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ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .
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3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the loss function:

L = Lillum + �1Lself + �2Lwarp

+ �3Lgmm + �4Lhist + �5Lce. (23)

4 Experimental Results
4.1 Implementation Details
The training starts with a 300-epochs self-regression with
the loss Lself then continue with a fully-equipped loss for
another 300 epochs. We choose �1 = 100, �2 = 10�4, �3 =
10�3, �4 = 1, �5 = 1.

To evaluate the performance of the proposed method,
we compare it with 1) unsupervised low-light image en-
hancement methods MF (Fu et al. 2016), LIME (Guo, Li,
and Ling 2017), Zero-DCE (Guo et al. 2020), RUAS (Liu
et al. 2021) and EnlightenGAN (Jiang et al. 2021); 2) super-
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noising and low-light methods. All deep methods use their
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where � is a hyper-parameter and ✏ avoids zero-division.
Combined with this Chromatic Retinex decomposition,

the output of hybrid neural representation changes from
Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

f(zt) = { bRt, bIt}, bXt = bRt ⌦ bIt. (17)

Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = k bRt ⌦ bIt �Xtk22, (18)

and:

Lillum = k # (bIt)� # (I0) k22 (19)

where we replace the regularization term in Eqn. (16) with a
downsampler # (·) following (Liang et al. 2022). Because
the Chromatic Retinex decouples distortions where color
flickers mainly exist in the illumination layer, we can assume
the temporal consistency of the reflectance layers. There-
fore, the warping loss Lwarp changes from Eqn. (3) into:
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After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bIct , we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,

we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:
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where � acts as the index for Gamma function:
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Then we obtain the final prediction X̃ . Added the enhance-
ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .

3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the following loss function:
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but there is a performance drop or no obvious gain. It may
be because the scale of training samples is small.
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After Chromatic Retinex decomposition, the noise in the
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resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bIct , we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
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3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.

Our neural representation can perform an implicit multi-
frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
⇣
bXt,warp

� bXt 1, o( bXt, bXt 1)
�⌘

, (3)

where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:

b✓ = {µi
t,�
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t}

= fp({Xt 1, Xt, Xt+1}), (4)

where b✓ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in 5, b✓ is
used to construct probability density function bp:

bp(x; b✓) =
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tN (x;µi
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whereN (·; ·) denotes Gaussian distribution. Given a pixel bx
from frame bXt, the probability bP (bx) is:

bP (bx) =
Z x+ /2

x /2

bp(x; b✓)dx, (6)

where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame bXt is:

Lgmm = E( bXt) =
1
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� log2 bP (bx). (7)

3.2 Hybrid Neural Representation
Hybrid neural representation (Chen et al. 2023) is in
between the explicit (embedding-centric) and implicit
(network-centric) representation. As mentioned in Sec. 2,
implicit neural representation encodes the information into
network parameters, where the input is a content-agnostic
coordinate, e.g. (x, y) for 2D images, (x, y, z) for 3D rep-
resentation or videos and (x, y, z,�,�) for Neural Radiance
Field (NeRF) (Mildenhall et al. 2020). While this formula-
tion forces the network to learn a continuous manifold space,
it does so at the cost of neglecting local information, making
it challenging for the network to generate fine-grained de-
tails (Yu et al. 2021; Peng et al. 2020). To tackle this, Chen
et al. (2023) proposes to replace the coordinate with an ex-
tracted deep embedding, which includes rich semantic infor-
mation. Here we extend the network for video restoration.
Content Bottleneck on Embeddings. Neural representa-
tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(z
t) = bXt,

zt = fenc(X
t), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.

Our neural representation can perform an implicit multi-
frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
⇣
bXt,warp
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, (3)

where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:
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where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame bXt is:
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et al. (2023) proposes to replace the coordinate with an ex-
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mation. Here we extend the network for video restoration.
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tion of videos (Chen et al. 2021) set content bottleneck on
the input of the network for enhancement, i.e. using only the
index t of the frame Xt as the image-wise representation:

fdec(t) = bXt, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
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and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:
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where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 4, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.
Our neural representation can perform an implicit multi-
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Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:
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where warp(·, ·) takes the former prediction bXt 1 and op-
tical flow between them o( bXt, bXt 1), then predicts the
warped result. Optical flow is calculated with TV-L1 algo-
rithm (Pérez, Meinhardt-Llopis, and Facciolo 2013) based
on predicted frames. Note that Eqn. (3) derives from
Noise2Noise (Lehtinen et al. 2018) paradigm, which is in-
valid without the i.i.d. assumption because of flicker. It will
be further discussed in Sec. 3.4, where we design a chro-
matic Retinex model to alleviate this issue.

3.3 Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
MSE loss is based on the maximum likelihood of the Gaus-
sian distribution. However, the distribution of noisy signals
in low-light videos is complex and hybrid (Wei et al. 2022).
Therefore, we adopt the Gaussian-mixture model and use a
deep network to predict the prior distribution in a variational
manner:
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= fp({Xt 1, Xt, Xt+1}), (4)

where b✓ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in 5, b✓ is
used to construct probability density function bp:

bp(x; b✓) =
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whereN (·; ·) denotes Gaussian distribution. Given a pixel bx
from frame bXt, the probability bP (bx) is:

bP (bx) =
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bp(x; b✓)dx, (6)

where � is set as the bin size 1/255 for bx 2 [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame bXt is:
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We follow the grey-world assumption and the white balance
design in the image signal processor (ISP) to set the green
channel as the denominator. Ic is formulated as:

Ic = �(
mean(��1(Xc))

mean(��1(Xg))
)I, (15)

where I denotes original illumination layer in Retinex model
and mean can be calculated locally or globally. In the im-
plementation, we use global mean and choose the definition
of I as:

I = argmin
x

(kx� I0k22 + �

����
rx

rI0 + ✏

����
1

),

I0 = max
c2{r,g,b}

(Xc), (16)

where � is a hyper-parameter and ✏ avoids zero-division.
Combined with this Chromatic Retinex decomposition,

the output of hybrid neural representation changes from
Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

f(zt) = { bRt, bIt}, bXt = bRt ⌦ bIt. (17)
Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = k bRt ⌦ bIt �Xtk22, (18)
and:

Lillum = k # (bIt)� # (I0) k22 (19)
where we replace the regularization term in Eqn. (16) with a
downsampler # (·) following (Liang et al. 2022). Because
the Chromatic Retinex decouples distortions where color
flickers mainly exist in the illumination layer, we can assume
the temporal consistency of the reflectance layers. There-
fore, the warping loss Lwarp changes from Eqn. (3) into:

Lwarp = d
⇣
bRt,warp

� bRt�1, o( bRt, bRt�1)
�⌘

. (20)

After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bItc, we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:

� = h(bI), (21)
where � acts as the index for Gamma function:

Ĩ = bI . (22)

Then we obtain the final prediction X̃ . Added the enhance-
ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .

Figure 6: Self-supervision in Chromatic Retinex Decompo-
sition. We omit the illumination enhancer which is displayed
in Fig. 5.

3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the loss function:

L = Lillum + �1Lself + �2Lwarp

+ �3Lgmm + �4Lhist + �5Lce. (23)

4 Experimental Results
4.1 Implementation Details
The training starts with a 300-epochs self-regression with
the loss Lself then continue with a fully-equipped loss for
another 300 epochs. We choose �1 = 100, �2 = 10�4, �3 =
10�3, �4 = 1, �5 = 1.

To evaluate the performance of the proposed method,
we compare it with 1) unsupervised low-light image en-
hancement methods MF (Fu et al. 2016), LIME (Guo, Li,
and Ling 2017), Zero-DCE (Guo et al. 2020), RUAS (Liu
et al. 2021) and EnlightenGAN (Jiang et al. 2021); 2) super-
vised low-light video enhancement methods: SMID (Chen
et al. 2019) and SDSD (Wang et al. 2021); 3) unsupervised
denoising methods: VBM4D (Maggioni et al. 2012) and
UDVD (Sheth et al. 2021); 4) combined unsupervised de-
noising and low-light methods. All deep methods use their
own pretrained checkpoints. We have attempted to retrain
unsupervised methods on the given sequence from scratch
but there is a performance drop or no obvious gain. It may
be because the scale of training samples is small.
The evaluation dataset is commonly used DRV (Chen

et al. 2019) which provides dynamic videos of a real dark
scene. After omitting videos captured in the same scene
or with too many or few frames, we randomly choose
an evaluation set where each video has 100-120 frames.
No-reference metrics NIQE (Mittal, Soundararajan, and
Bovik 2013), ILNIQE (Zhang, Zhang, and Bovik 2015),
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tion layers:
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Considering optimization in terms of illumination, the self-
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and:
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After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bItc, we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:

� = h(bI), (21)
where � acts as the index for Gamma function:

Ĩ = bI . (22)

Then we obtain the final prediction X̃ . Added the enhance-
ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .
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in Fig. 5.

3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the loss function:

L = Lillum + �1Lself + �2Lwarp
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4 Experimental Results
4.1 Implementation Details
The training starts with a 300-epochs self-regression with
the loss Lself then continue with a fully-equipped loss for
another 300 epochs. We choose �1 = 100, �2 = 10�4, �3 =
10�3, �4 = 1, �5 = 1.

To evaluate the performance of the proposed method,
we compare it with 1) unsupervised low-light image en-
hancement methods MF (Fu et al. 2016), LIME (Guo, Li,
and Ling 2017), Zero-DCE (Guo et al. 2020), RUAS (Liu
et al. 2021) and EnlightenGAN (Jiang et al. 2021); 2) super-
vised low-light video enhancement methods: SMID (Chen
et al. 2019) and SDSD (Wang et al. 2021); 3) unsupervised
denoising methods: VBM4D (Maggioni et al. 2012) and
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noising and low-light methods. All deep methods use their
own pretrained checkpoints. We have attempted to retrain
unsupervised methods on the given sequence from scratch
but there is a performance drop or no obvious gain. It may
be because the scale of training samples is small.

The evaluation dataset is commonly used DRV (Chen
et al. 2019) which provides dynamic videos of a real dark
scene. After omitting videos captured in the same scene
or with too many or few frames, we randomly choose
an evaluation set where each video has 100-120 frames.
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Figure 5: The framework of the proposed bottleneck neural representation.

predicting the distribution of pixel value of bX[i], center pixel
X[i] is masked using the blind-spot strategy.
Objective Bottleneck to Correct Illumination. Low-light
frames usually show biased illumination distribution and ex-
hibit color flicker. To prevent overfitting to this distortion,
we regulate the entropy of the soft histogram as outlined
in (Liang et al. 2022), along with the cross-entropy of the
conditioned soft histogram based on the average frame. The
former objective draws inspiration from the principles of
histogram equalization (Abdullah-Al-Wadud et al. 2007),
while the latter assesses the deviation of the current frame
from the averaged distribution.

Let S(·) denote the sigmoid function. Given a predicted
result bX 2 [0, 1], the soft histogram h̃( bX) is defined by:

h̃( bX)[j] =
X

S( bX � j

255
+

�

2
)� S( bX � j

255
� �

2
),

j 2 {0, 1, · · · , 255}. (8)

It is a relaxation of histogram h( bX) to enable backpropaga-
tion. The entropy of the soft histogram is given by:

Lhist = �E(h̃( bX)) =
X

j

h̃( bX)[j] log2 h̃( bX)[j]. (9)

With h̄ defined as the soft histogram of the averaged pre-
dicted frames, cross-entropy is calculated as:

Lce = �
X

j

h̃( bX)[j] log2 h̄[j]. (10)

3.4 Chromatic Retinex Decomposition
Instead of directly predicting the signal via neural represen-
tation, we propose to separately generate layer-wise repre-
sentations with a Chromatic Retinex decomposition. The de-
composition well decouples the coarse/fine-grained distor-
tions, benefiting the enhancement of different components.
Chromatic Retinex. The traditional Retinex model assumes
that the ambient lighting is monochromatic. During image
capture, accurate and stable white balance is the key to main-
taining this assumption. It adjusts the relative value of RGB
channels according to light temperature, making the image

appear as if captured under white light. However, as men-
tioned in Sec. 3.1, the white balance in low-light videos is
unstable among frames, causing severe color flicker. It de-
stroys the temporal consistency and disenables the i.i.d. con-
dition for frame-to-frame training in Eqn. (3).
With a biased white balance, the color of ambient light-

ing is recorded. Therefore, we propose to extend the original
monochromatic illumination layer into a chromatic one:

Xc = Ic ⌦Rc, 8c 2 {r, g, b}, (11)
where Xc is one of RGB channels of the original color
image, ⌦ means element-wise multiplication, Ic represents
the illumination layer with color, and Rc represents the re-
flectance layer. With unbalanced data dc and accurate white
balance weights wc, there is:

Xc = �(wc · dc), (12)
) Ic ⌦Rc = �(wc · dc),

) ��1(Ic ⌦Rc)

wc
= dc,

) ��1(Ic)⌦ ��1(Rc)

wc
= dc, (13)

where �(·) is the gamma correction which we simplify as
�(x) = x(1/2.2). With inaccurate white balance weights w̃c,
we maintain the reflectance layer unchanged:

��1(Ĩc)⌦ ��1(Rc)

w̃c
= dc. (14)

We follow the grey-world assumption and the white balance
design in the image signal processor (ISP) to set the green
channel as the denominator. Ic is formulated as:

Ic = �(
mean(��1(Xc))

mean(��1(Xg))
)I, (15)

where I denotes original illumination layer in Retinex model
and mean can be calculated locally or globally. In the im-
plementation, we use global mean and choose the definition
of I as:

I = argmin
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(Xc), (16)

Figure 6: Self-supervision in Chromatic Retinex Decompo-
sition. We omit the illumination enhancer which is displayed
in Fig. 5.

where � is a hyper-parameter and ✏ avoids zero-division.
Combined with this Chromatic Retinex decomposition,

the output of hybrid neural representation changes from
Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

f(zt) = { bRt, bIt}, bXt = bRt ⌦ bIt. (17)

Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = k bRt ⌦ bIt �Xtk22, (18)

and:

Lillum = k # (bIt)� # (I0) k22 (19)

where we replace the regularization term in Eqn. (16) with a
downsampler # (·) following (Liang et al. 2022). Because
the Chromatic Retinex decouples distortions where color
flickers mainly exist in the illumination layer, we can assume
the temporal consistency of the reflectance layers. There-
fore, the warping loss Lwarp changes from Eqn. (3) into:

Lwarp = d
⇣
bRt,warp
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�⌘

. (20)

After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination bIct , we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,

we omit frame number t and color channel c in the fol-
lowing. The convolution network adopts the same architec-
ture as (Guo et al. 2020) concatenated with a global average
pooling. It predicts three global parameters to control the
curve:

� = h(bI), (21)

where � acts as the index for Gamma function:

Ĩ = bI . (22)

Then we obtain the final prediction X̃ . Added the enhance-
ment module, the target of entropy constraints on the soft
histogram in Eqn. (9) and (10) changes from bX into X̃ .

3.5 Loss Function
The proposed bottleneck neural representation is optimized
by the following loss function:

L = Lillum + �1Lself + �2Lwarp

+ �3Lgmm + �4Lhist + �5Lce. (23)

4 Experimental Results
4.1 Implementation Details
The training starts with a 300-epochs self-regression with
the loss Lself then continue with a fully-equipped loss for
another 300 epochs. We choose �1 = 100, �2 = 10 4, �3 =
10 3, �4 = 1, �5 = 1.

To evaluate the performance of the proposed method,
we compare it with 1) unsupervised low-light image en-
hancement methods MF (Fu et al. 2016), LIME (Guo, Li,
and Ling 2017), Zero-DCE (Guo et al. 2020), RUAS (Liu
et al. 2021) and EnlightenGAN (Jiang et al. 2021); 2) super-
vised low-light video enhancement methods: SMID (Chen
et al. 2019) and SDSD (Wang et al. 2021); 3) unsupervised
denoising methods: VBM4D (Maggioni et al. 2012) and
UDVD (Sheth et al. 2021); 4) combined unsupervised de-
noising and low-light methods. All deep methods use their
own pretrained checkpoints. We have attempted to retrain
unsupervised methods on the given sequence from scratch
but there is a performance drop or no obvious gain. It may
be because the scale of training samples is small.
The evaluation dataset is commonly used DRV (Chen

et al. 2019) which provides dynamic videos of a real dark
scene. After omitting videos captured in the same scene
or with too many or few frames, we randomly choose
an evaluation set where each video has 100-120 frames.
No-reference metrics NIQE (Mittal, Soundararajan, and
Bovik 2013), ILNIQE (Zhang, Zhang, and Bovik 2015),
NIQMC (Gu et al. 2017) and Warping Error (WE) are cho-
sen as metrics.

4.2 Comparison Results
We provide subjective results in Fig. 7 and objective results
in Table 1 and Table 2. As shown, most unsupervised low-
light methods cannot handle the intensive noise in frames
captured in the real low-light scene. On the contrary, ampli-
fying the originally hidden noise hugely affects the subjec-
tive quality of the frames. The performance of supervised

Figure 4: The framework of the proposed bottleneck neural representation. A constrained deep embedding is first extracted and
then transformed into enhanced Retinex-based layer-wise representations. Hybrid neural representation provides richer intrinsic
information but still set bottlenecks from the perspective of content. Entropy minimization applies the bottleneck constraint in
the objective view to suppress noise and correct illumination. A chromatic Retinex representation helps align layer-wise frames,
which facilitates self-supervised learning.

index t of the frame Xt as the image-wise representation:

fdec(t) = X̂t, (1)

where fdec(·) denotes a neural network as decoder. Milden-
hall et al. (2020) demonstrates its rendering capacity of the
neural network with only t to reconstruct a sequence of high-
quality photos. But when applied to low-light videos, the
presence of corrupted frames significantly complicates the
learning process of this mapping, as highlighted in (Milden-
hall et al. 2022). Following the design of Yu et al. (2021)
and Chen et al. (2023), to improve the modeling capacity
to regress details, we replace the coordinate with a compact
learned embedding that brings richer information:

fdec(zt) = X̂t, zt = fenc(Xt), (2)

where fenc(·) denotes the encoder network and zt is the
compact embedding. The content bottleneck is guaranteed
by limiting the dimension of z. As shown in Fig 3, the em-
bedding additionally retains content-adaptive information
and alleviates the learning burden of the network compared
with only taking coordinates as the input. On the other hand,
z is so compact that most information is derived from the
network parameters, which implicitly forces z only to record
intrinsic signals instead of noise. As z is compact, this hy-
brid way naturally leads to a more intrinsic and temporally
consistent manifold with sufficient details. It is optimized on
the given sequence with self-regressed Mean-Square-Error
(MSE) loss. Naturally, this self-regression needs to consider
getting rid of fitting degradation, i.e. avoiding the network
over-fitting the noise, which are explored in the following.
Implicit Multi-Frame Fusion. One of the most common
ways is to fuse the information from multiple frames and
utilize temporal consistency to suppress noise. However, in
low-light conditions, severely degraded frames cannot be ro-
bustly pre-aligned.

Our neural representation can perform an implicit multi-
frame fusion that utilizes temporal information effectively.

Decoder’s parameters are shared across frames, after train-
ing on the input videos, the model naturally learns to gen-
erate temporal consistent results. Besides the neural repre-
sentation that injects the temporal information into network
parameters, we further regularize the implicit fusion with a
warping loss Lwarp:

Lwarp = d
(
X̂t,warp

(
X̂t−1, o(X̂t, X̂t−1)

))
, (3)

where warp(·, ·) takes the former prediction X̂t−1 and
optical flow between them o(X̂t, X̂t−1), then predicts the
warped result. Optical flow is calculated with TV-L1 al-
gorithm (Sánchez Púrez, Meinhardt-Llopis, and Facciolo
2013) based on predicted frames. Note that Eqn. (3) derives
from Noise2Noise (Lehtinen et al. 2018) paradigm, which
is invalid without the i.i.d. assumption because of flicker. It
will be further discussed in Sec. , where we design a chro-
matic Retinex model to alleviate this issue.

Entropy Minimization Model
In addition to the above-mentioned neural representations
that restrict information flow from the input, we also explore
creating an entropy minimization model that incorporates a
bottleneck from an objective perspective to suppress noise
and correct the illumination distribution.
Objective Bottleneck to Suppress Noise. Based on the
high-entropy nature of noise, we propose to model the distri-
bution of the noisy signal using a Gaussian-mixture model
and then suppress noise by minimizing the corresponding
entropy. Conventional losses for the objective bottleneck can
be derived from certain statistic models. For example, the
Mean Square Error (MSE) loss is based on the maximum
likelihood of the Gaussian distribution. However, the distri-
bution of noisy signals in low-light videos is complex and
hybrid (Wei et al. 2022). Therefore, we adopt the Gaussian-
mixture model and use a deep network to predict the prior
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distribution in a variational manner:

θ̂ = {µi
t, σ

i
t, w

i
t}

= fp({Xt−1, Xt, Xt+1}), (4)

where θ̂ is the parameters for Gaussian-mixture model and
fp denotes the prior predictor network. As shown in Fig. 4,
θ̂ is used to construct probability density function p̂:

p̂(x; θ̂) =
M∑

i=1

wi
t N (x;µi

t, σ
i
t), (5)

where N (·; ·) denotes Gaussian distribution. Given a pixel x̂
from frame X̂t, the probability P̂ (x̂) is:

P̂ (x̂) =

∫ x+δ/2

x−δ/2

p̂(x; θ̂)dx, (6)

where δ is set as the bin size 1/255 for x̂ ∈ [0, 1] considering
the quantization for output. Therefore, the mean entropy of
frame X̂t is:

Lgmm = E(X̂t) =
1

HW

∑

x̂

− log2 P̂ (x̂). (7)

It is also the maximum likelihood estimation of the given
Gaussian-mixture model. To bottleneck the objective, when
predicting the distribution of pixel value of X̂[i], center pixel
X[i] is masked using the blind-spot strategy.
Objective Bottleneck to Correct Illumination. Low-light
frames usually show biased illumination distribution and ex-
hibit color flicker. To prevent overfitting to this distortion,
we regulate the entropy of the soft histogram as outlined
in (Liang et al. 2022), along with the cross-entropy of the
conditioned soft histogram based on the average frame. The
former objective draws inspiration from the principles of
histogram equalization (Abdullah-Al-Wadud et al. 2007),
while the latter assesses the deviation of the current frame
from the averaged distribution.

Let S(·) denote the sigmoid function. Given a predicted
result X̂ ∈ [0, 1], the soft histogram h̃(X̂) is defined by:

h̃(X̂)[j] =
∑

S(X̂ − j

255
+

δ

2
)− S(X̂ − j

255
− δ

2
),

j ∈ {0, 1, · · · , 255}. (8)

It is a relaxation of histogram h(X̂) to enable backpropaga-
tion. The entropy of the soft histogram is given by:

Lhist = −E(h̃(X̂)) =
∑

j

h̃(X̂)[j] log2 h̃(X̂)[j]. (9)

With h̄ defined as the soft histogram of the averaged pre-
dicted frames, cross-entropy is calculated as:

Lce = −
∑

j

h̃(X̂)[j] log2 h̄[j]. (10)

Chromatic Retinex Decomposition
Instead of directly predicting the signal via neural represen-
tation, we propose to separately generate layer-wise repre-
sentations with a Chromatic Retinex decomposition. The de-
composition well decouples the coarse/fine-grained distor-
tions, benefiting the enhancement of different components.
Chromatic Retinex. The traditional Retinex model assumes
that the ambient lighting is monochromatic. During image
capture, accurate and stable white balance is the key to main-
taining this assumption. It adjusts the relative value of RGB
channels according to light temperature, making the image
appear as if captured under white light. However, as men-
tioned in Sec. , the white balance in low-light videos is un-
stable among frames, causing severe color flicker. It destroys
the temporal consistency and disenables the i.i.d. condition
for frame-to-frame training in Eqn. 3).

With a biased white balance, the color of ambient light-
ing is recorded. Therefore, we propose to extend the original
monochromatic illumination layer into a chromatic one:

Xc = Ic ⊗Rc, ∀c ∈ {r, g, b}, (11)

where Xc is one of RGB channels of the original color
image, ⊗ means element-wise multiplication, Ic represents
the illumination layer with color, and Rc represents the re-
flectance layer. With unbalanced data dc and accurate white
balance weights wc, there is:

Xc = σ(wc · dc), (12)
⇒ Ic ⊗Rc = σ(wc · dc),

⇒ σ−1(Ic ⊗Rc)

wc
= dc,

⇒ σ−1(Ic)⊗ σ−1(Rc)

wc
= dc, (13)

where σ(·) is the gamma correction which we simplify as
σ(x) = x(1/2.2). With inaccurate white balance weights w̃c,
we maintain the reflectance layer unchanged:

σ−1(Ĩc)⊗ σ−1(Rc)

w̃c
= dc. (14)

We follow the grey-world assumption and the white balance
design in the image signal processor (ISP) to set the green
channel as the denominator. Ic is formulated as:

Ic = σ(
mean(σ−1(Xc))

mean(σ−1(Xg))
)I, (15)

where I denotes original illumination layer in Retinex model
and mean can be calculated locally or globally. In the im-
plementation, we use global mean and optimize I with the
loss function:

Lillum = ∥ ↓ (Ît)− ↓ (Iot ) ∥22, (16)

where we replace the regularization term in Eqn. (16) with a
downsampler ↓ (·) following Liang et al. (2022).

Combined with this Chromatic Retinex decomposition,
the output of hybrid neural representation changes from
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(a) Low light frame (b) Zero-DCE (c) RUAS (d) EnlightenGAN (e) SDSD

(f) VBM4D (g) V + Zero-DCE (h) V + RUAS (i) V + EnlightenGAN (j) SMID

(k) UDVD (l) U + Zero-DCE (m) U + RUAS (n) U + EnlightenGAN (o) Ours

Figure 5: Comparison results on the evaluation datasets. V represents VBM4D and U denotes UDVD. Zoom in for best view.

Eqn. (2) into 3-channel reflectance and 3-channel illumina-
tion layers:

fdec(zt) = {R̂t, Ît}, X̂t = R̂t ⊗ Ît. (17)

Considering optimization in terms of illumination, the self-
regression loss Lself is defined as:

Lself = ∥R̂t ⊗ Ît −Xt∥22. (18)

Because the Chromatic Retinex decouples distortions
where color flickers mainly exist in the illumination layer,
we can assume the temporal consistency of the reflectance
layers. Therefore, the warping loss Lwarp changes from
Eqn. (3) into:

Lwarp = d
(
R̂t,warp

(
R̂t−1, o(R̂t, R̂t−1)

))
. (19)

After Chromatic Retinex decomposition, the noise in the
reflectance is naturally suppressed via hybrid neural rep-
resentation and entropy minimization as discussed before.
Then we propose a Channel-wise Gamma Estimation to en-
hance and calibrate the illumination.
Channel-wise Gamma Estimation. For brightening and
white re-balance, a mapping from original illumination to
a satisfactory distribution is needed. Specifically, for chro-
matic illumination Îct , we predict a channel-wise Gamma
curve for brightening and color refinement. For simplicity,
we omit frame number t and color channel c in the follow-
ing. It predicts a channel-wise global parameter to control
the curve:

Ĩ = flit(Î) = Îγ , (20)

where γ acts as the index for Gamma function, predicted by
a convolution network with a similar architecture as (Guo
et al. 2020).

Then we obtain the final prediction X̃ . Added the en-
hancement module, the target of entropy constraints on the
soft histogram in Eqn. (9) and (10) changes from X̂ into X̃ .

Loss Function
The proposed bottleneck neural representation is optimized
by the following loss function:

L = Lillum + λ1Lself + λ2Lwarp

+ λ3Lgmm + λ4Lhist + λ5Lce. (21)

Experimental Results
Implementation Details
The training starts with a 300-epochs self-regression then
continue with a fully-equipped loss for another 300 epochs.
We choose λ1=100, λ2=10−4, λ3=10−3, λ4=1, λ5=1. To
evaluate the performance of the proposed method, we com-
pare it with 1) unsupervised low-light image enhancement
methods: MF (Fu et al. 2016), LIME (Guo, Li, and Ling
2017), Zero-DCE (Guo et al. 2020), RUAS (Liu et al. 2021)
and EnlightenGAN (Jiang et al. 2021); 2) supervised low-
light video enhancement methods: SMID (Chen et al. 2019)
and SDSD (Wang et al. 2021); 3) unsupervised denoising
methods: VBM4D (Maggioni et al. 2012) and UDVD (Sheth
et al. 2021); 4) combined unsupervised denoising and low-
light methods. All deep methods use their own pretrained
checkpoints. We have attempted to retrain unsupervised
methods on the given sequence from scratch but there is no
obvious gain. It may be because the scale of training samples
is small.

The evaluation dataset is commonly used DRV (Chen
et al. 2019) which provides dynamic videos of a real dark
scene. After omitting videos captured in the same scene
or with too many or few frames, we randomly choose
an evaluation set where each video has 100-120 frames.
No-reference metrics NIQE (Mittal, Soundararajan, and
Bovik 2013), ILNIQE (Zhang, Zhang, and Bovik 2015), and
NIQMC (Gu et al. 2017) are chosen as metrics.
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Methods MF LIME Zero-DCE RUAS EnGAN SMID SDSD VBM4D UDVD Ours

NIQE ↓ 8.8771 8.7152 5.1637 6.8804 8.9096 11.1896 13.0713 6.8583 13.5302 4.7616
ILNIQE ↓ 58.4152 41.5132 44.0923 33.0497 37.7286 51.6142 59.5753 49.0038 51.8735 31.1489
NIQMC ↑ 3.5850 4.5716 3.9014 4.9217 4.4574 4.3616 3.9162 2.5386 2.6228 4.8123

Table 1: Quantitative results of different methods. The best scores are bold and the second ones are underlined.

VBM4D+ UDVD+
Methods - Zero-DCE RUAS EnGAN - Zero-DCE RUAS EnGAN Ours

NIQE ↓ 6.8583 5.5158 5.6597 4.8043 13.5302 7.7535 7.809 12.7212 4.7616
ILNIQE ↓ 49.0038 42.1871 39.2185 35.3030 51.8735 41.7951 33.5089 41.9427 31.1489
NIQMC ↑ 2.5386 3.7030 4.6428 4.4398 2.6228 3.8060 4.7444 4.5547 4.8123

Table 2: Comparison with cascaded denoising and enhancement. The best scores bold and the second ones are underlined.

Quantitative Evaluation
We provide quantitative results in Table 1 and Table 2. It
is clearly observed that, our method achieves significantly
superior performance compared with previous conventional,
unpaired learning, and self-supervised learning methods. In
addition, our method also outperforms the cascaded version
of low-light enhancement and denoising methods.

Qualitative Evaluation
We also provide qualitative results in Fig. 5. As shown, most
unsupervised low-light methods cannot handle the intensive
noise in frames captured in the real low-light scene. On the
contrary, amplifying the originally hidden noise hugely af-
fects the subjective quality of the frames. The performance
of supervised low-light video methods heavily relies on the
quality of the training set and lacks generalization to real
dark videos because of the domain gap. Unsupervised de-
noising methods show relatively promising results but do
not consider distortions of color. Besides, because the noise
model is hugely biased and hybrid in dark frames, predic-
tions from these methods are blurred.

Furthermore, we attempt to combine unsupervised de-
noising and unsupervised low-light image enhancement.
However, such a cascading does not guarantee a promis-
ing performance as well. In fact, pre-denoising may output
an over-smoothing result which causes loss of information
for the following enhancement. As a result, our proposed
method offers more visually promising results.

Ablation Studies
We conduct ablation studies as shown in Table 3.
Hybrid Neural Representation (HNR). Adopting hybrid
neural representation or not introduces a huge performance
gap. Without this design, the input is replaced by the frame
number. During the same training time, there is still an ob-
vious blur in predictions.
Gaussian-Mixture Model (GMM). Without the Gaussian-
mixture model as an objective bottleneck, the method easily
generates noise which originates from the powerful learning
capacity of the neural network.

HNR GMM SH CR CGE NIQE↓
✓ ✓ ✓ ✓ ✓ 4.7616

✓ ✓ ✓ ✓ 8.5161
✓ ✓ ✓ ✓ 5.1642
✓ ✓ ✓ ✓ 5.6177
✓ ✓ ✓ ✓ 4.9132
✓ ✓ ✓ ✓ 5.7324

Table 3: Ablation studies on the proposed designs. The
meaning of abbreviations can be found in Sec. .

Soft Histogram (SH). We attempt to replace the entropy
constraint on the soft histogram with the loss function pro-
posed by (Guo et al. 2020). The enhanced frames show an
unsatisfactory restoration of color.
Chromatic Retinex (CR). Replacing Chromatic Retinex
with a traditional one, the color bias is introduced in the re-
flectance layer. The temporal consistency of reflectance lay-
ers can not be guaranteed because of color bias.
Channel-wise Gamma Estimation (CGE). Instead of esti-
mating a channel-wise Gamma function, we attempt to use
a pixel-wise or global Gamma function. The former shows
unnatural illumination.

Conclusion

In this paper, we develop a self-learned enhancement ap-
proach that gets rid of the reliance on external data. We adopt
a bottleneck neural representation mechanism to squeeze out
only the high-quality signals. Compact deep embeddings are
used to describe frame-wise information, which forms a con-
sistent manifold. An entropy constraint is then applied to use
spatial-temporal context to filter out degraded visual signals
such as noise. At last, a novel Chromatic Retinex decompo-
sition is built for effective temporal alignment, which facili-
tates self-supervised learning. Comprehensive experiments
demonstrate our method’s effectiveness and robustness in
both spatial and temporal qualities.
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